Tissue reaction to sealing materials: different view at biocompatibility
نویسندگان
چکیده
The biodegradability of root canal sealers in areas other than the root canal system is crucial to the overall success rate of endodontic treatment. The aim of the present study was to investigate, the cell and tissue reaction to GuttaFlow and AHPlus, both in vitro and in vivo. For the in vitro experiments the materials were incubated with Human Periodontal Ligament Fibroblasts and cell proliferation and cytotoxicity analyses were performed. Additional fluorescence-microscope stainings were carried out in order to visualize cell growth and morphology. For assessment of the tissue reaction to the materials a subcutaneous implantation model in Wistar rats was employed and the inflammatory response to the materials was visualized by means of general and specific histology after 6 weeks. Human gingival fibroblasts proliferation seemed to be dependent upon dental material and cultivation time. After an incubation period of 96 hrs AHPlus proved to be significantly (p<0.002) more cytotoxic than GuttaFlow, as only a small number of fibroblasts survived on AHPlus. In vivo, GuttaFlow was surrounded by a fibrous capsule and no degradation took place, while AHPlus induced a well-vascularized granulation tissue in which the material was phagocyted by macrophages. The results of this study demonstrate that a potential cytotoxic effect of a sealing material may beneficial in order to have antibacterial properties and induce self degradation when accidentally extruded over the apical foramen.
منابع مشابه
Biocompatibility of eight different orthodontic materials: in-vivo rat model study
Biocompatibility of eight different orthodontic materials: in-vivo rat modl study Dr. Sadeghian, S.* - Dr. Razavi, S.M. ** - Dr. Masaeli, A.*** *Assistant Professor of Orthodontics Dept., Faculty of Dentistry, Isfahan Azad University (Khorasgan). **Assistant Professor of Pathology Dept., Faculty of Dentistry, Isfahan University of Medical Sciences. ***Dentist. Abstract Background & Aim: Differe...
متن کاملBiocompatibility and sealing ability of mineral trioxide aggregate and biodentine as root-end filling material: A systematic review
Introduction This systematic review intended to compare the biocompatibility and sealing ability of mineral trioxide aggregate (MTA) and biodentine as root-end filling material. Materials and Methods A computerized literature search was performed on March 1, 2016, in MEDLINE, PubMed, and COCHRANE LIBRARY for data published from January 2011 to March 2016. Quality assessment of the selected st...
متن کاملMTA applications in pediatric dentistry.
The aim of this paper is to show and asses the clinical applications of the Mineral Trioxide Aggregate (MTA) in pediatric dentistry, either on primary teeth or on immature apex permanent teeth. We have described the primary tooth pulpotomy technique using MTA, that is characterized by a superior biocompatibility and a sealing ability that make it a more suitable compound compared to other mater...
متن کاملMineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations.
INTRODUCTION Mineral trioxide aggregate (MTA) was developed because existing materials did not have the ideal characteristics for orthograde or retrograde root-end fillings. MTA has been recommended primarily as a root-end filling material, but it has also been used in pulp capping, pulpotomy, apical barrier formation in teeth with open apexes, repair of root perforations, and root canal fillin...
متن کاملIn vitro evaluation of a newly produced resin-based endodontic sealer
OBJECTIVES A variety of root canal sealers were recently launched to the market. This study evaluated physicochemical properties, biocompatibility, and sealing ability of a newly launched resin-based sealer (Dia-Proseal, Diadent) compared to the existing root canal sealers (AHplus, Dentsply DeTrey and ADseal, Metabiomed). MATERIALS AND METHODS The physicochemical properties of the tested seal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2010